The Brave Little Toaster Meets Usenet f

Karl L. Swartz — Network Appliance

ABSTRACT

Usenet volume has been growing exponentially for many years; this growth places ever-
increasing demands on the resources of a netnews server, particularly disk space — and file
system performance — for the article spool area. Keeping up with this demand became
substantially more difficult when it could no longer be satisfied by a single disk, and since
netnews is incidental to SLAC’s research mission, we wanted to find a solution that could easily
scale to meet future growth while requiring minimal system administration effort. In the process
of evaluating the various solutions that were proposed, we developed benchmarks to measure
performance for this specialized application, and were surprised to find that some of our beliefs
and intuition were not supported by the facts.

The alternatives considered by SLAC are described, as are the benchmarks developed to
evaluate the alternatives, and the results of those benchmarks. While netnews is the application
we examined, our experience will hopefully provide inspiration for others to more carefully
evaluate their applications instead of using stock benchmarks that may not correlate well with
the intended use. Our results may also break down some biases and encourage the reader to

consider alternatives which might otherwise have been ignored.

Introduction

This paper discusses work begun while the
author was employed by the Stanford Linear Accelera-
tor Center (SLAC).

In 1992, Usenet had outgrown the then-current
netnews server at SLAC. A study of growth trends,
based on data gathered from our server and other
sources, provided forecasting tools to guide the con-
figuration of a server that would be adequate until
early 1995 [1]. Despite an unprecedented surge in
growth between mid-1993 and early 1995 [2], that
server managed to outlive its original design life with
minimal tinkering, lasting until mid-1995 before suf-
fering a major collapse due to netnews volume.

Even before that collapse, SLAC had been study-
ing what to do for a next generation server. The labo-
ratory’s primary mission is research in high-energy
physics and related fields, so the ongoing drain of
resources for the care and feeding of an incidental ser-
vice like Usenet was becoming an irritant, especially
in a time of shrinking budgets and layoffs. Four goals
were established to guide specification of the new
server:

* Capacity and performance to accommodate
projected growth in traffic and readership thru
1997, without reducing newsgroups or expira-
tion times.

* Simplicity of future growth.

* Greater reliability.

* Reduction in administrative labor costs.

7This work supported by the United States Department of
Energy under contract number DE-ACO03-76SF00515, and
simultaneously published as SLAC PUB-7254.

The capital equipment budget for this project
was hardly munificent, imposing yet another con-
straint. (This was eased somewhat after it was shown
that the initial budget would not even pay for the nec-
essary disks.)

The key to this problem was the second point,
simplicity of future growth. Most of the reliability
shortcomings of SLAC’s earlier netnews servers had
come as they neared their design limits and became
increasingly susceptible to collapse when a minor
surge in traffic overwhelmed their strained resources.
By mid-1995, shutting down building power or net-
working for maintenance over a weekend could result
in the netnews server spending several weeks to work
through the resulting backlog. Nursing and tuning
such a sickly server just so it could do the job was a
major consumer of labor at times. For the holiday
shutdown, netnews — along with mail and payroll —
was deemed a critical system which would be fixed
immediately, instead of waiting until after New Year’s
Day, because of the cost of recovering from a pro-
tracted outage.

Critical Server Resources

The core of a netnews server consists of two
large databases located on disk: the articles them-
selves; and the history file, which tracks which articles
have been received and when they should be removed.
For a full news feed and a given set of expiration
times, the size of each is roughly proportional to the
number of articles accepted per week. From 1984 until
mid-1993 this value grew at a remarkably consistent
rate of approximately 67% per year, or doubling every
15 to 16 months [1, 3]. For nearly two years starting
mid-1993, growth surged to a 100% annual rate before

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 161

The Brave Little Toaster Meets Usenet

dropping back to the historic curve and perhaps even
lower [2].

This history file is still relatively manageable
despite exponential growth — with the generous expi-
ration times used by SLAC, the history file and associ-
ated indexes will only require about 763MB at the end
of 1997/, The main problem is that in older versions
of the dbz library used by C News and INN, the
dbzagain () routine did not automatically reduce
the size of the tag stored in the history.pag file as the
history file grew beyond the 2" bytes initially planned
for. SLAC discovered this when investigating why
expire was taking over two days to run — it seemed
to be trying to keep the entire history file in memory
and was thrashing badly. Rebuilding the history dbz
index provided a quick fix until updated software
could be installed to keep the problem from recurring
as the the relentless growth continued.

Unfortunately, the article spool area is a far more
difficult beast to tame. Using the SLAC server as an
example again, 8.9GB will be needed at the start of
1997, growing to 14.9GB by the end of the year. Even
the later, larger size wouldn’t be too bad if not for the
fact that it will consist of nearly 4.7 million files, with
over 1.8 million new files being created (and nearly as
many deleted) each week. The average rate is three
file creates and deletes per second — greater capacity is
needed to handle short-term surges. If that isn’t bad
enough yet, the problem gets worse if the articles are
not all stored in a single file system.

The reason for this is that the structure of news is
mapped directly onto the file system. The hierarchical
nature of newsgroup names becomes a directory hier-
archy, and each article is stored in its own file in the
directory corresponding to its newsgroup. Cross-
posted articles are implemented with links — prefer-
ably hard links, though symbolic links are used if nec-
essary. This is the reason for wanting to have the
entire article spool in a single file system, since a hard
link requires just another directory entry, while a sym-
bolic link imposes yet another file creation (and even-
tually deletion) along with hits on two file systems
when referenced.

Using multiple file systems also forces the news
administrator to invest effort in guessing how to allo-
cate newsgroups to the available file systems in a
manner which balances both space and load. It may be
difficult to change this allocation later, and a good bal-
ance now may not be good in the future if one set of
groups grows faster than another. Managing such a
setup is an intractable problem.

ISLAC uses 17 days as the expiration period for essentially
all newsgroups and for history data. History data had been
kept for 30 days, but when disk and memory constraints be-
came severe it was decided that this no longer added much
value given the fast propagation of netnews in the net today.

Swartz

Large File System Alternatives

SLAC’s netnews server was using two file sys-
tems for the article spool so we were all too familiar
with the problems with that solution. It was fairly
clear that a single, large disk would probably be a
problem for performance, even if we could get one
that was large enough (9GB, the largest readily avail-
able disk when the system was being acquired, would
work, but not even into 1997) and access it as a single
file system (with SunOS, we were limited to a 2GB
file system). That would still leave the requirement for
simplicity of future growth unaddressed.

To get a single, large file system, Sun’s OnLine:
DiskSuite [4] appeared to be the answer. Our netnews
server was a Sun (running SunOS 4.1.3) and other
sites seemed to be successfully using it for news. This
product increases the maximum size of a file system
on SunOS from 2 gigabytes to | terabyte. It allows the
creation of large volumes via striping (“RAID 0”) or
non-interleaved concatenation of multiple disks. It
also offers the option of higher availability and relia-
bility through mirroring (RAID 1) [5] and hot spares.

The choice between organizing the disks as a
concatenation or a stripe set was difficult. Striping
would seem to be better for performance since it
spreads data over all disks. A superficial analysis of
concatenation suggests it would fill most of one disk
before moving on to the next one. However, the BSD
Fast File System creates directories “in a cylinder
group that has a greater than average number of free
nodes, and the smallest number of directories in it,”
then tries to place files close to where their directory is
located [6]. With the large number of directories in
the article spool, one would expect data to be spread
amongst disks fairly quickly.

The weakness of RAID 0 is that the size of the
stripe set is fixed when the RAID virtual device is cre-
ated, whereas a concatenation can be expanded as
needed. A file system on a stripe set can be expanded
by concatenating another stripe set, but that may mean
buying more disks than are required for the desired
capacity. With the price of disks always dropping
(while capacity and performance increase), buying
disks well ahead of need is not appealing. An alterna-
tive is to concatenate just one or two disks, but that
raises the same performance concerns that motivated
the choice of striping in the first place. Why not just
start with a concatenation?

Many system managers claim that holes in an
NNTP stream are more valuable than the data. [7]

While many might debate the value of most net-
news content, there’s no doubt that a file system com-
posed of multiple disks in which there is no redun-
dancy — wherein a single drive failure can cause the
loss of all file data — is not a step towards the goal of
greater reliability. It also adds to administrative costs
because a failure becomes a crisis instead of a

162 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Swartz

nuisance which can be resolved at relative leisure.
With OnLine: DiskSuite, mirroring (RAID 1) is the
only available solution, possibly with one or more hot
spares to even further reduce the urgency of a failure.

Mirroring unfortunately requires twice as many
disks, preferably spread over twice as many con-
trollers. With a requirement of 14.9GB, and using fast
4GB disk drives, eight drives and two controllers
would be needed. Another year’s growth would
require two more controllers, forcing us to consider a
more expensive SPARCserver 20 instead of the
SPARCserver 5 we were contemplating, just to get
enough SBus slots. The hardware costs were escalat-
ing at an alarming rate! The only bright spot was that
the ability to choose from amongst several disks when
reading articles might mean a mirrored file system
would perform better, assuming reads account for a
significant percentage of the requests and the overhead
of mirroring doesn’t overwhelm this advantage.

RAID 5 would certainly have reduced the hard-
ware investment, but DiskSuite didn’t have it until the
Solstice DiskSuite 4.0 release [8]. This would have
required at least Solaris 2.3, and with limited
resources, SLAC had not yet taken on the challenge of
supporting Solaris 2. Other vendors were also undesir-
able because we hoped not to invest the effort in
migrating our netnews service to a whole new operat-
ing system.

Around the time of this design effort, SLAC’s
High-Performance Computing Team (known infor-
mally as the “Farm Team”) was looking at various
large, high-performance file systems for use in a pro-
totype data analysis effort. One of the alternatives
being explored was a Network Appliance filer (com-
monly known as a foaster because of its appliance-like
simplicity), and it was suggested as an appealing solu-
tion to the netnews problem. This was not the first
time this product had been considered for netnews at
SLAC — the large file system was very appealing — but
the prospect of NFS achieving adequate performance
relative to local disk for the many small files involved
in processing netnews seemed far-fetched.

There weren’t any other appealing ideas on the
horizon, so with some trepidation, we looked at the
Network Appliance product further. In addition to the
large file system, it had several other appealing fea-
tures. More disk drives could be added as needed,
even a single disk of different geometry from the oth-
ers, without impacting performance.

Even more interesting was the addition of sup-
port for very large directories [9] since very high vol-
ume newsgroups produce directories with many thou-
sands of files in them. Processing all files in a direc-
tory of n files requires Order(n”) search time in a tra-
ditional UNIX file system. BSD 4.3 reduces this to
Order(n) for programs that process files in sequential,
directory order [10], but netnews often accesses files
in a manner which reduces the effectiveness of this

The Brave Little Toaster Meets Usenet

optimization. The BSD solution also does not help file
creation, which is also Order(n) (i.e., Order(n®) to
populate a directory of n files). The Network Appli-
ance design only needs to examine n/256 directory
entries in the file creation case, and by using hash sig-
natures even fewer string comparisons are required.
This is still technically Order(n), but with a much
smaller constant multiplier it should be considerably
faster. (Processing all files in a directory in non-
sequential order is similarly still Order(n*) but with a
smaller multiplier.)

We agreed to at least give an NFS solution from
Network Appliance a chance, and they supplied a
NetApp 1400 for evaluation.

Benchmark Specification

Standard benchmarks can be useful tools for
comparing the performance of products from different
vendors for common uses. Their usefulness is dimin-
ished when one is confronted with a very specialized
application. A netnews server places unique and
demanding load patterns on a file system, so standard
benchmarks were not considered for more than a
moment in evaluating NetApp’s filer. Besides, the
obvious benchmark would have been SPEC SFS
(LADDIS) [11] which only tests NFS. Thus it could
not have been run against a local file system, one of
the two alternatives we were considering. We there-
fore set about devising a suitable application bench-
mark which could be run against both alternatives and
which would provide data which could be clearly cor-
related to an actual netnews server.

The first step was to identify the key activities of
a netnews server. Four such activities were identified.
* Receiving and storing new articles.
* Sending articles to other sites.
+ Expiring old articles.
* Serving articles to readers.

Receiving and storing new articles consumes the
majority of most netnews servers’ time. There is no
opportunity for parallelism, even in the presence of
multiple news feeds, because the incoming article
streams are effectively serialized before checking the
history file and possibly updating it and storing the
article. The goal of a server able to support the load
expected at the end of 1997 means the server must be
able to process each article in less than a third of a
second.

One of the challenges is that adding a file to a
directory is an Order(n) problem in a normal UNIX
file system, as discussed above. Each new article
requires a file creation, and possibly the addition of
links to other directories if the article was cross-
posted. Typical user directories rarely have more than
a few hundred entries, and adding files to them does
not significantly impede other activity on the system.
Unfortunately, neither property is true for netnews.

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 163

The Brave Little Toaster Meets Usenet

Sending articles to other sites was not initially
perceived as being an important activity with regard to
the file system, since nearly all of SLAC’s outgoing
news feeds use NNTP, and INNZ [12] tries to send
articles as soon as they are accepted, which means
they come from buffer cache and not from disk.
David Lawrence noted that UUNET had encountered
problems catching up when downstream NNTP sites
went down. Reading the articles back from disk turned
out to be a significant bottleneck [13].

Much of the process of expiring old articles hap-
pens in parallel with other netnews processing, but if
expire doesn’t get rid of old articles fast enough,
incoming news may be stalled until sufficient space is
available. Traditionally, expire’s file deletion pat-
tern exhibits the Order(n*) behavior of pathological
cases.’ While a command like rm will process files in
the order they appear in a directory, taking advantage
of BSD’s optimizations, expire generates delete
requests within a given directory in the order the files
were created. With previous expirations plus article
cancellations and other activities creating many holes
in a directory, creation order may end up being fairly
random. Expire also tends to jump from one direc-
tory to another, rather than focusing its efforts on one
directory before moving on, which not only may cause
disk seeks but also causes BSD to flush the cache
which it uses to improve sequential directory accesses.

Fortunately, INN includes the fastrm program
which avoids these and other shortcomings of older
expire implementations. INN’s expire merely
generates a list of files which it wants to delete, and
feeds this list to fastrm to do the deletion.

Finally, serving articles to readers would seem to
be a very important part of what a netnews server
does. In terms of performance, given a modest reader
population, this task is in fact of little consequence.
Multiple readers can be served in parallel, and any
given reader most likely won’t mind if fetching an
article takes half a second instead of a quarter of a sec-
ond. Such delays won’t cause a backlog of work to
pile up, at least for the server.

The odds are that most articles won’t ever be
read anyway. Consider that at the time of LISA X,
SLAC’s netnews server is expected to be accepting
about 900,000 articles per week. SLAC has roughly
1,200 employees and if half of them read netnews,
each will have to read an average of 1,500 articles per
week — 1,500 different articles from those read by any-
one else at SLAC — for all of the incoming articles to
be read. With a much larger user community, such as

2SLAC was still running C News at the time, even though
it was fairly clear that INN was better suited to SLAC’s
needs. With resources scarce, installing the new software
had been deferred until the new server was acquired.

INetnews is exceedingly good at finding and exploiting
pathological cases to greatest disadvantage.

Swartz

at a large Internet Service Provider, all of the articles
might be read, but not at a place such as SLAC.

With these guidelines in mind, a benchmark was
constructed which would measure the performance of
receiving articles and of expiring them. Batching arti-
cles was added to the test set later on, after the need
became more apparent.

Benchmark Construction

The simplest way to construct a meaningful and
repeatable benchmark seemed to be to capture a snap-
shot of a news feed, then feed it into actual netnews
software, timing key parts of the process. While the
new server was expected to run INN, C News? was
chosen for the benchmarks as its many pieces seemed
better suited to isolation and individual examination
than the monolithic structure of INN. The data struc-
tures on disk are identical and are manipulated in simi-
lar ways, so for a study of file system performance,
results from one should apply to the other.

The benchmark is a simple shell script perform-
ing some setup work, then multiple passes consisting
of three phases: unbatch, batch, and expire. The criti-
cal piece of each phase is invoked with time to col-
lect elapsed time and other statistics.” Only the core
program in each phase is actually used, since the lock-
ing and other overhead of the higher-level scripts
would serve no purpose and would obscure the results
that are of interest.

The unbatch phase of the benchmark, which
measures the receiving and storing of new articles, is
fairly straightforward. First, a large number of batches
was copied to the incoming spool area. Enough data
was used to ensure that all caches were flushed so as
not to mask the performance of the underlying file
systems. Then, the relaynews program was
invoked directly on the batches. The same arguments
were used as the newsrun script would use in a live
system, except that no stale value was specified since
the batches would likely contain very old news by the
time the final benchmarks were run.

The batch phase measures sending backlogged
articles to other sites. To generate the batches, C News
was configured to feed a single downstream site with
the following sys file:

what we’ll accept
ME:all

downstream - everything (almost)
downstream:all, ! junk:f:

“The “Cleanup Release of C News, with patch CR.E,”
from January 1995.

Nfsstat -c is invoked before and after the timed
piece to also capture NFS statistics. This data has not yet
been analyzed as it doesn’t directly impact the results of this
project. It may provide some interesting tuning information,
though.

164 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Swartz

In each pass, the batch generated by the unbatch phase
is moved aside. Actual batching is only done every
third pass in an attempt to reduce the already lengthy
test time without losing too many data points, and the
batch generated in the previous phase is used in order
to simulate a seriously backlogged feed. (Since
datasets were chosen to exceed memory size and thus
eliminate cache effects, this probably has no real
effect.) Again, only the component of the batching
process which is directly affected by file system per-
formance was used, in this case the batcher utility
with input from the batch file and output to
/dev/null.

The expire phase is a little trickier since file
deletion is rolled into one program along with scan-
ning and rebuilding the history file, at least in the C
News version. Moreover, expire works by looking
at article timestamps, which for this benchmark are
totally meaningless.

Instead of using expire, its actions were synthe-
sized in simplified form. First, the number of history
entries was recorded after each unbatch phase. A sim-
ple awk script then uses this information to scan the
history file, expiring articles from more than retention
previous passes. The list of articles to be deleted is
written to one file while the modified history file is
written to another. (History entries are kept for the
duration of the benchmark.) The new history file is
then run thru dbz and moved into place.

To measure the file system component of the
expiration process, the file containing the list of article
files to be deleted is then fed into either dumbrm or
sort|fastrm. Dumbrm is a simple C program
which reads pathnames from stdin and deletes
them, generating the same unlink () calls as
expire itself would. Fastrm is the utility from
INNY, invoked with the same options used by INN’s
expire. The sort is included in the timing to pro-
duce a more fair comparison to dumbrm; it’s debat-
able whether or not this should have been included.

All the News That’s Fit to Test

Collecting data to fuel the benchmark was
accomplished by creating a fake uucp feed of all arti-
cles on SLAC’s netnews server and capturing approxi-
mately half a week’s batches from August, 1995. A
total of 2759 batches were collected, containing
300,150 articles in 911 megabytes.

While this was good enough to generate interest-
ing results, a set large enough to represent at least a
week was desired. A script was written which reads an
existing batch and modifies message ids in Mes-
sage-1ID and Supersedes headers and the target
message id of cancel control messages. To do this,
a delimiter and a clone number are appended to the

6INN1.4-sec from December 22, 1993.

The Brave Little Toaster Meets Usenet

host portion of each message id, a combination
unlikely to conflict any real message id. Byte counts
were fixed and the clone batch written.

With the original data and two clones, over
900,000 articles were available, approximating the
expected feed for the first week of October, 1996. The
benchmark was configured to run 14 passes with 592
batches per pass (shortchanging pass 14 by 11
batches), with an expiration step of 6. This simulates a
system running expire twice per day, with a three day
retention period for all newsgroups. Most sites proba-
bly only run expire once per day, but the more fre-
quent expirations encourages rapid fragmentation of
the file system and directories, thus simulating a more
mature system.

Testbed Configuration

The initial testbed used at SLAC consisted of a
SPARCserver 2 and a NetApp 1400. While this setup
produced sufficient results to make an unequivocal
choice between the alternatives, the author’s move to a
job at Network Appliance offered the opportunity to
run a more thorough set of tests on a wider variety of
configurations. These results are the ones presented in
this paper.

The primary test host used was an Axil 311, a
SPARCserver 20 clone but with a CPU module that
appeared to be equivalent to that in a SPARCserver
10/41. This system was equipped with 128MB of
memory, a Sun Quad Ethernet interface card, and a
Cisco CDDI interface card. Five 4GB Seagate
ST15230N (Hawk) Fast SCSI disks were attached to
the on board SCSI bus, with the first used as the sys-
tem disk (the internal disk was disconnected) and the
other four used for /var/spool/news (the article
spool file system(s)) or unused when testing against a
filer. SunOS 4.1.4 was installed with a large (nearly
2GB) partition left on the system disk for
/usr/1ib/news (where the history file and news
configuration files are stored). C News binaries and
the benchmark itself were also stored on this disk.

Two filers were used, both running the NetApp
3.1.4c Data ONTAP software release. The first was a
NetApp 1400 configured identically to the one pur-
chased by SLAC — 128MB, 2MB NVRAM, a single
10 megabit/second Ethernet interface, and seven 4GB
Seagate ST15230N Fast SCSI disks. (This model is no
longer offered; the current entry-level NetApp F220 is
about twice as fast as the NetApp 1400 based on LAD-
DIS results.) To explore the performance of a high-
end filer which a large Internet Service Provider might
prefer for greater performance and/or disk capacity, a
NetApp F540 was also tested. This filer had 256MB,
8MB NVRAM, both 10/100 megabit/second Ethernet
and CDDI interfaces, and seven 4GB Seagate
ST15150W (Barracuda) Fast/Wide SCSI disks.

There was some debate about the effect of sev-
eral filer options recommended by Network Appliance

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 165

The Brave Little Toaster Meets Usenet

for netnews applications, as well as the value of FDDI
versus a dedicated Ethernet, so another Axil was bor-
rowed to run some abridged test runs against the filers
while the first Axil was running various test runs
involving only local disks. This second unit was an
Axil 235, apparently a SPARCserver 10 clone with a
SPARC 20 CPU module (!), with 64MB, a Cisco
CDDI interface card, and a single 4GB Seagate
ST15230N Fast SCSI disk that was cloned using dd
from the first system after it had been configured but
before OnLine: DiskSuite was installed.

Other than one of the filer software configuration
options (no_atime_update), default values were
used on the filers and on SunOS. In particular, extra
inodes were not allocated on either the filers or on
SunOS file systems during initialization, nor was the
Snapshot feature of the filers [14] disabled. The
default inodes value for newfs seemed to be ade-
quate. The filers would need more inodes in practice,
but since the number of inodes can be increased on-
the-fly there’s no need to add more until one has a bet-
ter idea of how many will be needed. The first
impulse would be to disable Snapshots entirely, but
having at least one hourly Snapshot might be handy
for recovering from the occasional slip of the fingers
as root. Since the cost of creating a Snapshot is incon-
sequential, there’s no performance reason to disable
them, only the need to recover disk space fairly
quickly after expire deletes articles.

The Ethernet consisted of a crossover (hub-to-
hub) cable for the Ethernet tests, and an isolated DEC
CDDI concentrator for the FDDI tests. Another
machine was also attached to the FDDI network to
provide a repository for the test batches and for test
results. (No access to this machine took place during
instrumented portions of the benchmark.)

disk | type | hierarchy
1 mnt | alt (alt.binaries linked to disk 4)
2 link | rec,soc,talk,de
3 link | comp,misc,sci,news,bit,gnu,vmsnet
4 dir | everything else (incl. alt.binaries)

Figure 1: Newsgroup allocation for symlinked local
disks and method of attaching hierarchy to main
spool area.

The benchmark runs using the four local disks
for /var/spool/news were done with three dif-
ferent configurations. The first was run without
OnLine: DiskSuite and used a 2GB partition on each
disk”, with space parceled out by hand via symlinks
(and a mount for alt) as detailed in Figure 1. For the
next test, OnLine: DiskSuite was used to create a
16GB striped partition using an interlace factor of

72GB is the largest partition supported by SunOS 4.1.4
without using OnLine: DiskSuite.

Swartz

16KB.8 The third configuration used two concatenated
disks, with the second pair of disks mirroring the first
pair, providing an 8GB file system.

Toaster or Local Disk?

The results of the benchmark runs were dra-
matic. Because of the added operational flexibility of
the toaster, we would have been happy if its perfor-
mance was comparable to local disks. In fact, as Fig-
ure 2 shows, the 1400 was nearly four times as fast, on
average, as the best configuration of local disks on the
unbatch tests. The F540 was over five times as fast!
Equally surprising was the poor performance of the
OnLine: DiskSuite configurations. The mirrored con-
catenation arrangement was barely 50% faster than the
absolute minimum of three articles per second
required by the end of 1997, precious little headroom
for catching up much less capacity for future growth.

articles per second
45
40 + —
35 H —
30 H —
25 H —
20 H —
15 H —
10 H —

i I

0 - -
F540 1400 sym- stripe mirror
FDDI Ether link concat

Figure 2: Average number of articles unbatched per
second over full benchmark run for various con-
figurations.

The only result that didn’t come as a big surprise
was that striping was faster than concatenation (with
mirroring), by about 33%. The conjecture that con-
catenation might cause one disk (or mirrored pair) to
be filled before moving on to the next was not borne
out, however. During the runs, visual observation of
the disk activity lights and monitoring via the
iostat utility both indicated that the data was being
spread amongst the two disks even though neither was
near capacity.

Looking at the data in more detail, some perfor-
mance degradation can be seen in Figure 3 as the file
system fills and ages. In pass 14, the NetApp F540
and the symlinked local disks both retain 86.5% of
their performance from pass 1; the NetApp 1400 lost a
bit more (down to 85%) but the difference is probably
not significant. Pass 8 is the first pass after expiring
articles (only articles more than six passes old are

8The default for OnLine: DiskSuite is the size of a cylinder
on the first disk, which seemed inappropriate for a modern
SCSI disk for which all cylinders might not be the same
size. The 16KB value was borrowed from the default in Sol-
stice DiskSuite 4.0.

166 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Swartz

expired, so the expire phase at the end of pass 7 is the
first to actually do anything), which presumably has
something to do with the surge in filer performance.
The local disk test shows a similar though less pro-
nounced effect, with 7.1% better performance in pass
8 than in pass 7, compared to 12.6% for the NetApp
1400 and 14.8% for the NetApp F540. This may be
an artifact of the test data, but no examination has
been done to determine if there is anything unusual
about the articles processed in pass 8.

articles per second
45
40 —
35 .
30 I LR AR N
S5 [Tt

%(5)‘ 1400 -.-.- .
o f ok

s [-
0 | | | | | |
0 2 4 6 g8 10 12 14

benchmark pass
Figure 3: Articles unbatched per second

The performance advantage of the filers over
local disks is even more dramatic for expiration. As
seen in Figure 4, the F540 is over an order of magni-
tude faster than local disk and the 1400 is a
respectable 8.5 times as fast. Data for the OnLine:
DiskSuite configurations is not shown because each
pass was painfully slow and getting slower. With lim-
ited equipment time available, the mirrored concatena-
tion test was stopped after six passes, which were suf-
ficient to show that it was significantly slower than the
symlinked arrangement, while the stripe run was inter-
rupted after five complete passes by a power failure.

minutes
100

80 | -
60 | -
40 | -
20 | -

—

F540 1400 symlink
FDDI Ether
Figure 4: Average time in minutes required for delete

portion of expire.

All of the tests in this set used dumbrm rather
than INN’s fastrm. This made little difference for
the filers, as detailed later in this paper. Presumably
expiration on local disks would have benefited greatly
from fastrm, but the unbatch numbers had already
convincingly shown that local disks were marginal at

The Brave Little Toaster Meets Usenet

best for the job, so it was felt that the several days of
test time needed to complete a fa st rm run would not
be productive.

The final set of comparisons are those for batch-
ing outgoing news feeds, shown in Figure 5. While the
difference is not as dramatic as it is for the other parts
of the benchmark, the filers are still faster than local
disks. In addition, the local disk results appear to be
getting slower as the file system ages, whereas the fil-
ers suffer much less performance degradation.

minutes
70
60 |- -
50 pb---"" T TT--—-7 -
40 |- F540 — |
1400 «----

30 - symlink ———]
20 freeeenreertrtr e N
10 F -

0

3 6 9 12
benchmark pass

Figure 5: Average batch time in minutes.

Light or Dark Toast?

Prior to the final set of filer runs described
above, another set of tests was run to evaluate the
effects of several alternative filer and networking
options. Network Appliance recommended that the
following filer options be changed from the defaults
for netnews applications:

options no_atime_update on
options minra on

The first option causes the filer to not update access
times on files. For netnews, there’s no apparent value
in maintaining file access times, and not updating
them saves the expense of writing the updates to disk.

The case for the second option, which causes the
filer to refrain from aggressive read ahead (in anticipa-
tion of sequential access to an entire file), is less clear.
Assuming all user access is via NNTP [15], the only
apparent cases in which one would start reading part
of an article and not read to the end-of-file would be
using NNTP’s HEAD command or if the connection is
broken during an ARTICLE or BODY command.
With contemporary newsreaders using the XOVER
command and the NOV database to access most data
formerly obtained using HEAD, it’s not clear what
value turning off read ahead provides. The only plau-
sible justification is that Internet Service Providers
who might have large numbers of customers accessing
large binary postings, via comparatively slow modem
links, might end up wasting filer memory, and perhaps
causing thrashing, because too much data is being
cached too far in advance of its being needed.

1996 LISA X — September 29-October 4, 1996 — Chicago, IL 167

The Brave Little Toaster Meets Usenet

Besides studying these options, we wondered
how much benefit would be derived from the lower
latency of FDDI, the benefit of fastrm on the filer,
and whether or not it would be advantageous to also
place the history file on the filer.

A series of benchmark runs were done using the
NetApp F540 and the second Axil, described above, to
compare these alternatives. Since there were a number
of different runs to perform, they were abbreviated to
only ten passes. This allowed three batch samples and
three post-expire unbatch samples, which was felt
would provide enough data to draw reasonable conclu-
sions without taking an inordinate amount of time.

The first pairing was FDDI versus Ethernet.
Using FDDI, the unbatch tests ran in an average of
90.8% of the time needed with Ethernet. Batching
was even faster, taking only 88% of the Ethernet time.
Expire was marginally slower over FDDI, but the dif-
ference is probably statistically insignificant. The
remainder of the tests with the NetApp F540 were
done using FDDI. (Tests of the NetApp 1400 were
done using Ethernet because it did not have an FDDI
interface.)

The next set of tests individually compared the
two recommended options against the baseline FDDI
test. Neither had any significant effect on unbatching,
which was unsurprising since both options influence
reads, and unbatching does little reading from the arti-
cle spool. For batching, minra had little effect (it
was expected that it would hurt) but not updating
access times saved about 5% of the baseline FDDI
time. As expected, expire saw no benefit from not
updating access times, but seemed to be slightly faster
with minra. It’s not clear why this option would
have any effect on file deletion. Since only
no_atime update was clearly beneficial it was
the only option used in the remainder of the tests.

articles per second
45
40 =
35 w
30 f... 4
25 el .. 4
20 + -

.
o e,
15 | e

local — Tttrees :

5L filer ««---

0 I N NN (N N N N
1 2 3 4 5 6 7 8 9 10
benchmark pass

Figure 6: Average number of articles unbatched per
second with the history file on the filer instead of
local disk, with articles stored on the filer in both
cases.

The next test showed that expire ran several per-
cent faster using fastrm. However, since we did not

Swartz

have fastrm data for the local disk cases in the pri-
mary testbed, the full benchmarks run against the fil-
ers were done using the marginally suboptimal (for fil-
ers) dumb rm.

The last of these tests produced the most interest-
ing results. With the history file and other contents of
/usr/1ib/news on the filer along with the article
spool, batching was about 2% slower and expire about
3% slower than only having the article spool on the
filer. No difference would have been expected for
expire since the timed portion of expire does not
access anything in /usr/1ib/news. Presumably
the extra filer activity before this step pushed some
data out of cache, slowing expire. The big difference
came during the unbatch tests. As illustrated in Figure
6, putting the history file on the filer produced unbatch
times which started off taking 22% longer, progressing
to as much as 150% more time as the system aged.

Future Research

One of the implementors of the log-structured
file system (LFS) in BSD 4.4 [16, 17] suggested that
netnews would be a good application for LFS, since a
log-structured file system is designed to optimize writ-
ing to disk. This is how the critical unbatch part of
netnews processing spends much of its time. The suc-
cess of the Network Appliance filers is consistent with
this conjecture since their Write Anywhere File Lay-
out (WAFL) [14], while not a log-structured design,
similarly optimizes writes to minimize head seeks.
Using a BSD 4.4 system to compare an LFS-based
article spool file system to an FFS-based equivalent
would be interesting, though a filer would still be
expected to offer better performance due to the large
directory support, if nothing else.

The b+ tree data structures used for directories in
the Windows NT file system [18] to allow it to per-
form quick file lookups in large directories make
NTFS seem appealing for netnews. Other aspects of
NTEFS appear to incur more overhead than would be
desired for an application as demanding as netnews.
Since Network Appliance’s new Multiprotocol Filer
software features native support for CIFS, the equiva-
lent of NFS in the Windows networking world, and
several netnews implementations are available for
Windows NT, another netnews comparison project is
likely in the author’s future.

Conclusions

Then let us praise the brave appliance
In which we place this just reliance [19]

The surprisingly fast performance of the Net-
work Appliance filer in the netnews benchmarks made
the decision regarding SLAC’s netnews server obvi-
ous. More important, though, the results served as a
strong reminder to avoid preconceptions. Benchmarks
can produce surprising results, which presumably is
why many people run them in the first place. Finally,

168 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

Swartz

NFS, despite its age and weaknesses, can still do a
remarkably good job.

Availability

The benchmark tools may be made available if
there is interest. Please contact the author via e-mail at
kls@netapp.com for more information.

Acknowledgments

Special thanks to Mom and to my wife, Krissie.
Mom was always encouraging even when she had no
idea what I was really working on. I’ll miss her.
Krissie has been very understanding and supportive of
my long work hours during what is supposed to be our
honeymoon year. Others who helped in various ways
include Mark Barnett, George Berg, Chuck Boeheim,
Bob Cook, Renata Dart, Rosemary Dinelli, Walt Dis-
ney Co., Guy Harris, Dave Hitz, Moana Kutsche,
Randy Melen, Lincoln Myers, Rob Salmon, Arnie
Thompson, Andy Watson, Bebo White, and others
whose contribution is not diminished by my failure to
remember them here. My gratitude goes to all of them.
Thanks, too, to Alexander for his patience. Still no
more skunks, but he’s on Bath Row anyway.

Author Information

Karl Swartz was Team Leader of the System
Administration Team in SLAC Computing Services at
the Stanford Linear Accelerator Center when this
work was started. He was so impressed by the
toaster’s performance that he joined Network Appli-
ance as a Technical Marketing Engineer. Prior to
SLAC, he worked at the Los Alamos National Labora-
tory on computer security and nuclear materials
accounting, and in Pittsburgh at Formtek, a start-up
now owned by Lockheed-Martin, on vector and raster
CAD systems. He attended the University of Oregon
where he studied computer science and economics.
Between work and a new wife, Karl hasn’t been on the
racetrack in far too long, but he does find time to mod-
erate a newsgroup (sci.aeronautics.airliners) and to
enjoy good food and good beer and trips to the beach
with his wife, Krissie, and their Golden Retriever,
Alexander. Krissie would be very upset if either of
them castrated or slaughtered cattle. E-mail Karl at
kls@chicago.com or kls@netapp.com.

References

1.Karl L. Swartz, “Forecasting Disk Resource
Requirements for a Usenet Server,” Proceedings
of the 7th USENIX Large Installation System
Administration Conference (LISA VII), pp.
101-108, Monterey, California, November 1993.
Also published as SLAC-PUB-6353.

2.Karl L. Swartz, “Usenet Growth Graphs,”
http://www.chicago.com/ kls/news-growth.html.

3. Rick Adams, Usenet post, c. September 1993.

1996 LISA X — September 29-October 4, 1996 — Chicago, IL

10.

11.

12.

13.

14.

15.

16.

17.

The Brave Little Toaster Meets Usenet

. OnLine: DiskSuite Reference Manual, Sun

Microsystems, Mountain View, California, 1991.

. D. Patterson, G. Gibson, and R. Katz, “A Case

for Redundant Arrays of Inexpensive Disks
(RAID),” ACM SIGMOD 88, pp. 109-116,
Chicago, June 1988.

.Marshall Kirk McKusick, William N. Joy,

Samuel J. Leffler, and Robert S. Fabry, “A Fast
File System for UNIX,” in 4.4BSD System Man-
ager’s Manual, O’Reilly & Associates,
Sebastopol, California, April 1994.

. V. Jacobson, “Compressing TCP/IP Headers for

Low-Speed Serial Links,” RFC 1144, February
1990. Footnote 29.

. Solstice DiskSuite 4.0 Administration Guide, Sun
Microsystems, Mountain View, California,
March 1995.

. Byron Rakitzis and Andy Watson, Accelerated

Performance for Large Directories, Technical
Report 3006, Network Appliance, Mountain
View, California, February 1996.

Samuel J. Leffler, Marshall Kirk McKusick,
Michael J. Karels, and John S. Quarterman, The
Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, Reading,
Massachusetts, 1989.

Mark Wittle and Bruce E. Keith, “LADDIS: The
Next Generation in NFS File Server Benchmark-
ing,” Proceedings of the 1993 Summer USENIX
Technical Conference, pp. 111-128, Cincinnati,
Ohio, June 1993.

Rich Salz, “InterNetNews: Usenet transport for
Internet sites,” Proceedings of the 1992 Summer
USENIX Technical Conference, pp. 93-98, San
Antonio, Texas, June 1992.

David Lawrence, private conversation, January
1996.

Dave Hitz, James Lau, and Michael Malcolm,
“File System Design for an NFS File Server
Appliance,” Proceedings of the 1994 Winter
USENIX Technical Conference, pp. 235-245, San
Francisco, January 1994. Also published as Net-
work Appliance Technical Report 3002.

Brian Kantor and Phil Lapsley, “Network News
Transfer Protocol,” RFC 977, February 1986.
Margo Seltzer, Keith Bostic, Marshall Kirk
McKusick, and Carl Staelin, “An Implementa-
tion of a Log-Structured File System for UNIX,”
Proceedings of the 1993 Winter USENIX Techni-
cal Conference, pp. 307-326, San Diego, Califor-
nia, January 1993.

Margo Seltzer, Keith A. Smith, Hari Balakrish-
nan, Jacqueline Chang, Sara McMains, and
Venkata Padmanabhan, “File System Logging
versus Clustering: A Performance Comparison,”
Proceedings of the 1995 Winter USENIX Techni-
cal Conference, pp. 249-264, New Orleans,
Louisiana, January 1995.

169

The Brave Little Toaster Meets Usenet Swartz

18. Helen Custer, Inside the Windows NT File Sys-
tem, Microsoft Press, Redmond, Washington,
1994.

19. Thomas M. Disch, The Brave Little Toaster,
Doubleday & Company, Garden City, New York,
1986. The full-length animated movie of the
same title, based on this novella, inspired the title
of this paper.

170 1996 LISA X — September 29-October 4, 1996 — Chicago, IL

